Kita telah membicarakan refleksi pemantulan pulsa gelombang pada dawai bila pulsa itu sampai di titik batas, baik ujung tetap maupun ujung bebas. Sekarang kita akan membicarakan apa yang terjadi apabila gelombang sinusoidal direfleksikan oleh ujung tetap dawai. Kita akan membahas persoalan ini dengan meninjau superposisi dari dua gelombang yang merambat sepanjang dawai satu gelombang mengatakan gelombang datang dan gelombang yang lain menyatakan gelombang yang direfleksikan di ujung tetap. Gambar 1 menunjukkan seutas dawai yang ujung kirinya diikatkan pada penopang ujung tetap. Ujung kanan dawai itu digerakkan naik-turun dengan gerak harmonik sederhana sehingga menghasilkan gelombang berjalan ke kiri. Selanjutnya, gelombang yang direfleksikan di ujung tetap itu merambat ke kanan. Apa yang terjadi apabila kedua gelombang itu bergabung? Pola gelombang yang dihasilkan apabila kedua gelombang itu bergabung ternyata tidak lagi seperti dua gelombang yang berjalan dengan arah berlawanan, tetapi dawai itu tampak seperti terbagi-bagi menjadi beberapa segmen, seperti tampak pada foto yang ditunjukkan pada Gambar 1a, 1b, dan 1c. Gambar 1d menunjukkan bentuk sesaat dawai pada Gambar 1b. Pada gelombang yang merambat sepanjang dawai, amplitudonya tetap dan pola gelombang merambat dengan laju yang sama dengan laju gelombang. Untuk gelombang yang disajikan pada Gambar 1, pola gelombang tetap dalam posisi yang sama sepanjang dawai dan amplitudonya berubah-ubah. Ada titik-titik tertentu yang sama sekali tidak bergerak amplitudo sama dengan nol. Titik-titik ini dinamakan simpul dan ditandai dengan S, sedangkan di titik tengah di antara dua titik simpul terdapat titik perut dan ditandai dengan P Gambar 1d. Di titik perut amplitudonya maksimum. Pada titik simpul terjadi interferensi destruktif, sedangkan pada titik perut terjadi interferensi konstruktif. Jarak antara dua titik simpul yang berurutan sama dengan jarak antara dua titik perut yang berurutan, yaitu ½ λ. Bentuk gelombang seperti yang ditunjukkan pada Gambar 1 tidak bergerak sepanjang dawai, sehingga gelombang ini disebut gelombang berdiri gelombang stasioner. Gambar 1 a-c Gelombang-gelombang berdiri pada dawai yang diregangkan. Dari a ke c frekuensi getaran di ujung kanan bertambah, sehingga panjang gelombang dari gelombang berdiri itu berkurang. d Perbesaran gerak gelombang berdiri pada b. Kita dapat menurunkan fungsi gelombang berdiri dengan cara menjumlahkan fungsi gelombang y1 dan y2 yang memiliki amplitudo, periode, dan panjang gelombang yang sama yang merambat dalam arah berlawanan. Fungsi gelombang y1 menyatakan gelombang datang yang merambat ke kiri sepanjang sumbu-x positif dan ketika sampai di x = 0 direfleksikan, sedangkan fungsi gelombang y2 menyatakan gelombang yang direfleksikan yang merambat ke kanan dari x = 0 Sebagaimana telah diuraikan sebelumnya, gelombang yang direfleksikan pada ujung tetap akan terbalik. Dengan demikian, Perhatikan bahwa perubahan tanda ini bersesuaian dengan perubahan fase sebesar 1800 atau π rad. Pada x = 0 gerakan gelombang yang merambat ke kiri adalah y1 x = 0 = A sin t dan gerak gelombang yang merambat ke kanan adalah y2 x = 0 = - A sin t = A sin t + π. Fungsi gelombang berdiri merupakan jumlah dari kedua fungsi gelombang di atas, yaitu Dengan menggunakan rumus trigonometri diperoleh, Persamaan 1 memiliki dua variabel bebas, yaitu x dan t. Ungkapan 2A sin kx menunjukkan bahwa pada setiap saat bentuk dawai itu merupakan fungsi sinus. Meskipun demikian, tidak seperti gelombang berjalan pada dawai, bentuk gelombang berdiri tetap pada posisi yang sama dan berosilasi turun-naik. Setiap titik pada dawai mengalami gerak harmonik sederhana, tetapi semua titik di antara dua titik simpul yang berurutan berosilasi sefase. Persamaan 1 dapat digunakan untuk menentukan posisi titik simpul, yaitu titik-titik yang pergeserannya sama dengan nol. Hal ini terjadi ketika sin kx = 0 atau kx = 0, π, 2π, 3π, ...,. Dengan mengingat k = 2π/λ, maka atau posisi titik-titik simpul gelombang berdiri, dengan ujung tetap di x = 0 Persamaan 2 dapat juga digunakan untuk menentukan posisi titik perut, yaitu titik-titik yang memiliki amplitudo maksimum baik positif maupun negatif. Letak titik perut ditentukan oleh yang harus bernilai maksimum. Harga sinus sudut paling besar, baik positif maupun negatif, berharga ±1. Dengan demikian, letak titik perut dapat ditentukan berdasarkan persyaratan
Duagelombang sinus berjalan dalam arah yang berlawanan. Keduanya berinterferensi menghasilkan suatu gelombang stasioner yang dinyatakan dengan persamaan: y=2,5 sin(0,4πx) cos(200πt), dengan x dalam meter dan t dalam sekon. Maka besarnya frekuensi dan jarak dua simpul terdekat pada gelombang tersebut adalahContoh Soal Gelombang Stasioner – akan mengulas seputar contoh persoalan yang sering muncul pada pelajaran fisika SMA, MA maupun SMK. Dimana gelombang stasioner dipelajari oleh para siswa kelas 11 bersamaan dengan jenis gelombang ilmu fisika, salah satu peristiwa alam paling berpengaruh adalah gelombang sehingga siswa perlu mempelajari setiap jenis gelombang tersebut. Di kelas 11 sendiri, materi serta contoh soal gelombang stasioner masuk dalam mapel fisika semester Materi Gelombang StasionerKonsep Dasar Gelombang StasionerJenis Gelombang StasionerPenggunaan Gelombang StasionerRumus Soal Gelombang StasionerRumus Hitung Soal GSUBRumus Hitung Soal GSUTContoh Soal Gelombang Stasioner & JawabanContoh Soal Stasioner 1Contoh Soal Stasioner 2Contoh Soal Stasioner 3Contoh Soal Stasioner 4Contoh Soal Stasioner 5Download Contoh Soal Latihan Gelombang Stasioner Kelas 11 PDFAkhir KataJadi bagaimana gambaran pembelajaran tentang gelombang stasioner? Untuk menjawab pertanyaan tersebut perlu ada bahasan khusus mengenai rangkuman pelajaran serta contoh soal gelombang stasioner. Oleh karena itu, di sini Kursiguru hendak membahas soal gelombang artikel kali ini, penulis nantinya akan membagikan informasi mulai dari rangkuman materi, rumus hitung hingga contoh soal gelombang stasioner beserta jawabannya. Jika kamu adalah guru pengampu fisika ataupun murid kelas 11 simaklah bahasan gelombang stasioner berikut secara Materi Gelombang StasionerPembahasan kali ini hendak penulis awali dengan memberikan info seputar rangkuman pelajaran gelombang stasioner. Silakan baca uraian mengenai konsep dasar, jenis serta gambaran contoh pemanfaatan gelombang stasioner berikut Dasar Gelombang StasionerSebelumnya pasti kamu sudah mengetahui bagaimana pengertian gelombang berjalan, bukan? Dimana konsep dasar gelombang stasioner merupakan kebalikannya yakni sebuah gelombang yang memiliki nilai amplitudo berubah ubah tidak tetap.Perubahan amplitudo pada gelombang stasioner sendiri terjadi karena gelombang stasioner adalah hasil perpaduan dua buah gelombang dengan amplitudo berubah. Terkadang gelombang stasioner juga disebut dengan istilah lain seperti gelombang tegak atau gelombang adanya perubahan amplitudo di gelombang stasioner, tentu saja ada titik saat nilai amplitudonya maksimal serta minimal. Titik maksimum gelombang stasioner disebut sebagai perut P, sedangkan titik minimumnya disebut dengan simpul S.Jenis Gelombang StasionerSelanjutnya adalah uraian seputar pengelompokan gelombang stasioner. Dimana jika ditinjau dari fase gelombangnya, gelombang stasioner terbagi menjadi 2 dua jenis yaitu gelombang stasioner ujung bebas serta Gelombang Stasioner Ujung Bebas GSUBGSUB merupakan jenis gelombang stasioner yang tidak mengalami perubahan fase pada gelombang datang serta gelombang pantulannya fase = 0. Hal ini membuat P gelombang stasioner berada di separuh dari panjang satu gelombang, sementara S terdapat di seperempat Gelombang Stasioner Ujung Tetap GSUTGSUT adalah jenis gelombang stasioner yang mengalami perubahan fase pada gelombang datang dan pantulannya fase = 1/2π. Hal tersebut membuat P gelombang stasioner ujung tetap berada di seperempat gelombang, serta S ada di setengah Gelombang StasionerSeperti telah diketahui bersama bahwa sesuatu hal yang berhubungan dengan ilmu fisika umumnya memiliki manfaat penggunaan tersendiri. Untuk gelombang stasioner, penggunaan ataupun contoh kejadian di alam terdapat pada beberapa hal berikut musik senar gitar, kulit gendang, pengiriman & penerimaan sinyal radioPeristiwa alam gelombang air lautSelanjutnya adalah pembahasan mengenai rumus mengerjakan soal gelombang stasioner. Dimana rumus perhitungan soal gelombang stasioner dapat kamu simak secara langsung di gambar berikut Hitung Soal GSUBRumus Hitung Soal GSUTContoh Soal Gelombang Stasioner & JawabanSetelah memahami rangkuman beserta rumus hitungnya, maka simaklah bagaimana bentuk contoh soal gelombang stasioner dan cara mengerjakannya di bawah. Dimana setiap contoh soal gelombang stasioner di bawah dilengkapi dengan jawaban Soal Stasioner 1Franky membuat simulasi dua buah gelombang sinus dengan arah berlawanan sehingga timbul sebuah gelombang stasioner. Jika bentuk persamaan gelombang stasioner Franky adalah y = 6 sin6x cos 600t, hitunglah nilai amplitudo maksimum, gelombang datang serta gelombang stasioner saat x = 5m!Jawaban y = 6 sin6x cos 600ty = 2A sinkx costA maks = 6mA datang = 6/2 = 3mAs = 6 sin6x = 6 sin30 = 3mContoh Soal Stasioner 2Hitunglah panjang gelombang, frekuensi serta cepat rambat gelombang stasioner milik Franky berdasarkan soal nomor 1!Jawaban λ = 2π/k = 2π/6 = π/3 mf = /2π = 600/2π = 300/π Hzv = λ*f = π/3 * 300/π = 100m/sContoh Soal Stasioner 3Usopp mengamati gelombang stasioner ujung tetap dengan persamaan gelombang y = 4 sin5πx cos4πt. Tentukan periode gelombang Usopp tersebut!Jawaban y = 4 sin5πx cos 4πty = 2A sinkx costsehingga = 4πmaka = 2πf = 2π/TT = 2π/ = 2π/4π = 1/2 Soal Stasioner 4Berdasarkan contoh soal nomor 3 di atas, tentukanlah cepat rambat gelombang Usopp!Jawaban v = /k = 4π/5π = 0,8 m/ Soal Stasioner 5Berdasarkan contoh soal nomor 3 di atas, tentukanlah jarak perut ketiga gelombang stasioner Usopp ketika x =0!Jawaban k = 5πλ = 2π/k = 2π/5π = 0,4 msehingga P3 adalahP = λ/42n+1 = 0,4/42*3+1 = 0,1*7 = 0, Contoh Soal Latihan Gelombang Stasioner Kelas 11 PDFSeperti pada pembahasan Contoh Soal Gelombang Elektromagnetik, kali ini penulis juga akan membagikan file PDF berisi contoh soal latihan gelombang stasioner kelas 11. Silakan download langsung file berisi soal latihan gelombang stasioner kelas XI dengan menekan tombol unduh di KataDemikian ulasan Kursiguru seputar contoh soal gelombang stasioner kelas 11 mulai dari ringkasan materinya hingga pembahasan soal. Semoga uraian terkait gelombang stasioner di atas mampu mempermudah proses belajar mengajar mapel fisika kelas XI baik untuk guru maupun murid.Rumusrumus umum dalam mekanika, fisika panas, listrik magnet, dan gelombang telah berhasil disusun. Dalam mekanika, telah. Komentar Artikel : Beberapa alasan yang membuat toko fisik masih bertahan. m x a. Jun 04, 2022 · F aksi = - F reaksi Gaya aksi dan reaksi tersebut memiliki besar yang sama,tetapi berlawanan arah dan bekerja pada dua Gelombang Berjalan & Stasioner - Simpangan, Nodes, AntinodesPenulis Diperbarui August 25th, 2021Apa jadinya ketika dua gelombang saling bertemu?Gelombang transversal dapat dibangkitkan wujudnya dengan dua cara berbeda. Perbedaan mendasar antara keduanya terletak bagaimana keduanya bergerak. Supaya lebih jelas, yuk kita bahas IsiGelombang BerjalanCepat Rambat GelombangGelombang StasionerRumus SimpanganNodesAntinodesMembedakkan Kedua GelombangCoba bayangin, apa jadinya ketika suatu fungsi sinus bergerak maju ke kanan sebagai contoh aja.Terus coba pikiran juga, misal ada suatu tali seperti ilustrasi pada pembahasan tentang gelombang mekanik. Kemudian tiap titik pada tali tersebut secara sinkron ada yang bergerak ke atas dan ke kejadian tersebut sama-sama akan menghasilkan bentuk suatu gelombang sesuai namanya, gelombang yang bergerak maju tadi disebut sebagai gelombang berjalan. Yang mana representasi secara matematisnya seperti pada pembahasan sebelumnya, yaitu seperti berikutDengan penjelasan parameter yang serupa juga yaituA m adalah amplitudo atau simpangan m merupakan posisi yang ingin diketahui besar rad/s merupakan frekuensi s adalah simpangan pada detik m-1 merupakan konstanta Rambat GelombangMengenai gelombang berjalan, kalimat bergerak maju yang sebelumnya dijelaskan sangat identik dengan yang namanya kalau gitu, kali ini kita coba cari berapa kecepatan yang dimiliki oleh gelombang gimana nih, padahal kita cuman punya fungsi simpangan amplitudonya aja. Sedangkan ingin diketahui besar kecepatan majunya gelombang alias ke arah sumbu gampang bro, coba perhatikan ilustrasi gelombang berjalan akan diperiksa suatu titik, sebut saja namanya titik 1, tentu jika gelombang hanya bergerak maju, maka titik 1 akan tetap pada nilai simpangan yx,t tetap sama setiap waktunya. Dengan kata lain, jika posisi horisontal dan waktunya berubah x1, t1→ x1', t1' berapapun itu, maka nilai simpangannya selalu gelombang berjalan, suatu titik tidak mengalami perubahan simpangan, melainkan posisinya yang berubah sesuai arah amplitudo A tetap sama alias sudah tetap pada nilai tertentu, maka nilai sinkx - t ini lah yang harus mengakibatkan kombinasi linear dari kx - t haruslah selalu sama berapapun posisi x dan demikian, apabila kita melihat gambar gelombang sebelumya, simpangan di t1 dengan t1' bernilai di dalam fungsi sinus tersebut selalu sekarang udah tau nih fungsi perpindahannya, yaituSekarang udah pada tahu kan harus diapain kalau mau dicari kecepatannya? Tentunya kita perlu mencari turunanya. Oke, langsung aja kita turunkan persamaannya, bakal didapatDengan penjelasan parameter yang serupa juga seperti memanfaatkan persamaan untuk pada pembahasan mengenai ciri-ciri gelombang mekanik, bisa juga diekspresikan menjadiDiketahui kalau λ merupakan panjang gelombang. Lalu T adalah periode atau waktu yang diperlukan untuk menempuh satu panjang gelombang kalian amati kembali, kita sebenarnya bukan cuman sekedar memanipulasi persamaannya, kita bisa mendapatkan artian lainnya. Yaitu seberapa "cepat" gelombang dapat merambat untuk melalui satu gelombang rumus tersebut tak lain merupakan representasi dari kecepatan pada umumnya, yaitu jarak panjang gelombang per StasionerAda yang unik nih pada gelombang stasioner ini, karena gelombang ini dapat dibentuk oleh dua gelombang berjalan yang identik dan arah rambatnya saling gelombang sebelumnya simpangannya tetap, tapi namun posisinya maju, kalau yang satu ini justru tidak bergerak maju. Melainkan, setiap titik dari gelombang ini bergerak hanya naik stasioner tidak bergerak maju, titik-titiknya hanya bergerak naik SimpanganIngat kembali contoh tali pada pembahasan ciri-ciri gelombang mekanik, bagi yang belum baca silahkan dilihat dulu situ dijelaskan, ketika ada dua gelombang berjalan yang saling berlawanan, namun memiliki fase yang sama, maka akan terdapat gelombang lainnya yang merupakan hasil superposisi antara pada pembahasan tersebut, sejatinya tali tersebut hanyalah bergerak ke atas dan ke bawah secara bergantian, kok bisa?Coba perhatikan persamaan hasil superposisinyaSaya kasih tanda kurung bagian pentingnya, dan di sini x hanya mewakili letak suatu titik pada apakah gelombang akan memiliki kecepatan, dx/dt = v?Tentu tidak, karena terpisahnya antara komponen kecepatan dan waktu. Dan coba amati juga, di sini artinya setiap titik akan memiliki amplitudo yang 2A sin kx selalu konstan, dan nilainya bergantung pada letak suatu titik x-nya. Lalu, gerakkan naik turunnya sendiri dipengaruhi oleh waktu melalui ekspresi cosinus tersebut yang diberi tanda kurung.Ada beberapa fakta lainnya yang bisa kita ambil dari rumus simpangan sebelumnya. Panjang gelombangnya sama seperti gelombang "penyusunnya", begitu juga besar itu, hanya dengan menghasilkan gelombang dengan amplitudo kecil, bisa dihasilkan gelombang baru yang amplitudonya lebih besar. Yakni dengan memanfaatkan pantulannya gelombang itu hal unik lainnya, karena tidak semua titik mengalami osilasi naik dan lagi rumus simpangan sebelumnya. Apa jadinya ketika suku kx pada fungsi sinus-nya mengakibatkan hasil keluarannya bernilai nol?Gak peduli terhadap nilai cosinus-nya, maka titik pada gelombang itu akan terus diam. Kondisi ini dicapai ketikaSelanjutnya, substitusikan k = 2π/λ, didapatDemikian, pada lokasi tersebut titik tidak akan mengalami oslasi. Titik-titik tersebut dikenal sebagai tadi merupakan lokasi di mana titik tidak mengalami gerak, ada juga titik yang mempunyai simpangan ini bisa dicapai apabila fungsi sinusnya menghasilkan nilai maksimalnya, yaitu 1. Seperti iniLakukan langkah mirip seperti pada mencari nodes, substitusikan k = 2π/λ, sehinggaSemua titik yang berada di sini memiliki amplitudo paling tinggi, yang disebut Kedua GelombangGimana jadinya kalau kita disuruh untuk membedakkan antara gelombang berjalan dan stasioner?Cukup menarik nih, soalnya kalau kita amati secara visual tentu akan sangat sulit sekali. Soalnya sama-sama bentuknya mirip seolah tidak ada perbedaan, apalagi ketika frekuensinya sangat mempermudahnya, kita bisa manfaatkan kedua persamaan yang mendeskripsikan kedua perhatikan kedua persamaan untuk gelombang transversal dan stasioner, secara berturut-turutSerta satu laginyaTerlihat bahwa, pada gelombang berjalan, untuk menjaga fase tetap sama nilai kx - t konstan setiap t meningkat, maka x juga harus meningkat alias bergeser atau bergerak maju. Sedangkan pada gelombang stasioner, x-nya tidak perlu meningkat.